[ACCEPTED]-C++11: Compile Time Calculation of Array-constexpr
There is a pure C++11 (no boost, no macros 8 too) solution to this problem. Using the 7 same trick as this answer we can build a sequence of 6 numbers and unpack them to call f
to construct 5 a std::array
:
#include <array>
#include <algorithm>
#include <iterator>
#include <iostream>
template<int ...>
struct seq { };
template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };
template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
constexpr int f(int n) {
return n;
}
template <int N>
class array_thinger {
typedef typename gens<N>::type list;
template <int ...S>
static constexpr std::array<int,N> make_arr(seq<S...>) {
return std::array<int,N>{{f(S)...}};
}
public:
static constexpr std::array<int,N> arr = make_arr(list());
};
template <int N>
constexpr std::array<int,N> array_thinger<N>::arr;
int main() {
std::copy(begin(array_thinger<10>::arr), end(array_thinger<10>::arr),
std::ostream_iterator<int>(std::cout, "\n"));
}
(Tested with g++ 4.7)
You could skip std::array
entirely 4 with a bit more work, but I think in this 3 instance it's cleaner and simpler to just 2 use std::array
.
You can also do this recursively:
#include <array>
#include <functional>
#include <algorithm>
#include <iterator>
#include <iostream>
constexpr int f(int n) {
return n;
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N==sizeof...(Vals),std::array<int, N>>::type
make() {
return std::array<int,N>{{Vals...}};
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N!=sizeof...(Vals), std::array<int,N>>::type
make() {
return make<N, Vals..., f(sizeof...(Vals))>();
}
int main() {
const auto arr = make<10>();
std::copy(begin(arr), end(arr), std::ostream_iterator<int>(std::cout, "\n"));
}
Which 1 is arguably simpler.
Boost.Preprocessor can help you. The restriction, however, is 5 that you have to use integral literal such 4 as 10
instead of N
(even be it compile-time 3 constant):
#include <iostream>
#include <boost/preprocessor/repetition/enum.hpp>
#define VALUE(z, n, text) f(n)
//ideone doesn't support Boost for C++11, so it is C++03 example,
//so can't use constexpr in the function below
int f(int x) { return x * 10; }
int main() {
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) }; //N = 10
std::size_t const n = sizeof(a)/sizeof(int);
std::cout << "count = " << n << "\n";
for(std::size_t i = 0 ; i != n ; ++i )
std::cout << a[i] << "\n";
return 0;
}
Output (ideone):
count = 10
0
10
20
30
40
50
60
70
80
90
The macro in the following 2 line:
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) };
expands to this:
int const a[] = {f(0), f(1), ... f(9)};
A more detail explanation 1 is here:
If you want the array to live in static 3 memory, you could try this:
template<class T> struct id { typedef T type; };
template<int...> struct int_pack {};
template<int N, int...Tail> struct make_int_range
: make_int_range<N-1,N-1,Tail...> {};
template<int...Tail> struct make_int_range<0,Tail...>
: id<int_pack<Tail...>> {};
#include <array>
constexpr int f(int n) { return n*(n+1)/2; }
template<class Indices = typename make_int_range<10>::type>
struct my_lookup_table;
template<int...Indices>
struct my_lookup_table<int_pack<Indices...>>
{
static const int size = sizeof...(Indices);
typedef std::array<int,size> array_type;
static const array_type& get()
{
static const array_type arr = {{f(Indices)...}};
return arr;
}
};
#include <iostream>
int main()
{
auto& lut = my_lookup_table<>::get();
for (int i : lut)
std::cout << i << std::endl;
}
If you want a 2 local copy of the array to work on, simply 1 remove the ampersand.
There are quite a few great answers here. The 8 question and tags specify c++11
, but as a few 7 years have passed, some (like myself) stumbling 6 upon this question may be open to using 5 c++14
. If so, it is possible to do this very 4 cleanly and concisely using std::integer_sequence
; moreover, it 3 can be used to instantiate much longer arrays, since 2 the current "Best I Have" is limited by 1 recursion depth.
constexpr std::size_t f(std::size_t x) { return x*x; } // A constexpr function
constexpr std::size_t N = 5; // Length of array
using TSequence = std::make_index_sequence<N>;
static_assert(std::is_same<TSequence, std::integer_sequence<std::size_t, 0, 1, 2, 3, 4>>::value,
"Make index sequence uses std::size_t and produces a parameter pack from [0,N)");
using TArray = std::array<std::size_t,N>;
// When you call this function with a specific std::integer_sequence,
// the parameter pack i... is used to deduce the the template parameter
// pack. Once this is known, this parameter pack is expanded in
// the body of the function, calling f(i) for each i in [0,N).
template<std::size_t...i>
constexpr TArray
get_array(std::integer_sequence<std::size_t,i...>)
{
return TArray{{ f(i)... }};
}
int main()
{
constexpr auto s = TSequence();
constexpr auto a = get_array(s);
for (const auto &i : a) std::cout << i << " "; // 0 1 4 9 16
return EXIT_SUCCESS;
}
I slightly extended the answer from Flexo 3 and Andrew Tomazos so that the user can 2 specify the computational range and the 1 function to be evaluated.
#include <array>
#include <iostream>
#include <iomanip>
template<typename ComputePolicy, int min, int max, int ... expandedIndices>
struct ComputeEngine
{
static const int lengthOfArray = max - min + sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return ComputeEngine<ComputePolicy, min, max - 1, max, expandedIndices...>::compute( );
}
};
template<typename ComputePolicy, int min, int ... expandedIndices>
struct ComputeEngine<ComputePolicy, min, min, expandedIndices...>
{
static const int lengthOfArray = sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return FactorArray { { ComputePolicy::compute( min ), ComputePolicy::compute( expandedIndices )... } };
}
};
/// compute 1/j
struct ComputePolicy1
{
typedef double ValueType;
static constexpr ValueType compute( int i )
{
return i > 0 ? 1.0 / i : 0.0;
}
};
/// compute j^2
struct ComputePolicy2
{
typedef int ValueType;
static constexpr ValueType compute( int i )
{
return i * i;
}
};
constexpr auto factors1 = ComputeEngine<ComputePolicy1, 4, 7>::compute( );
constexpr auto factors2 = ComputeEngine<ComputePolicy2, 3, 9>::compute( );
int main( void )
{
using namespace std;
cout << "Values of factors1" << endl;
for ( int i = 0; i < factors1.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors1[i] << endl;
}
cout << "------------------------------------------" << endl;
cout << "Values of factors2" << endl;
for ( int i = 0; i < factors2.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors2[i] << endl;
}
return 0;
}
Here's a more concise answer where you explicitly 1 declare the elements in the original sequence.
#include <array>
constexpr int f(int i) { return 2 * i; }
template <int... Ts>
struct sequence
{
using result = sequence<f(Ts)...>;
static std::array<int, sizeof...(Ts)> apply() { return {{Ts...}}; }
};
using v1 = sequence<1, 2, 3, 4>;
using v2 = typename v1::result;
int main()
{
auto x = v2::apply();
return 0;
}
How about this one?
#include <array>
#include <iostream>
constexpr int f(int i) { return 2 * i; }
template <int N, int... Ts>
struct t { using type = typename t<N - 1, Ts..., 101 - N>::type; };
template <int... Ts>
struct t<0u, Ts...>
{
using type = t<0u, Ts...>;
static std::array<int, sizeof...(Ts)> apply() { return {{f(Ts)...}}; }
};
int main()
{
using v = typename t<100>::type;
auto x = v::apply();
}
0
I don't think that's the best way to do 2 this, but one can try somewhat like this:
#include <array>
#include <iostream>
#include <numbers>
constexpr auto pi{std::numbers::pi_v<long double>};
template <typename T>
struct fun
{
T v;
explicit constexpr fun(T a) : v{a * a} {}
};
template <size_t N, typename T, typename F>
struct pcl_arr
{
std::array<T, N> d;
explicit constexpr pcl_arr()
: d{}
{
for (size_t i{}; i < N; d[i] = !i ? 0. : F(pi + i).v, ++i);
}
};
int main()
{
using yummy = pcl_arr<10, long double, fun<long double>>;
constexpr yummy pies;
std::array cloned_pies{pies.d};
// long double comparison is unsafe
// it's just for the sake of example
static_assert(pies.d[0] == 0.);
for (const auto & pie : pies.d) { std::cout << pie << ' '; } std::cout << '\n';
for (const auto & pie : cloned_pies) { std::cout << pie << ' '; } std::cout << '\n';
return 0;
}
godbolt.org 1 x86-x64 gcc 11.2 -Wall -O3 -std=c++20 output:
0 17.1528 26.436 37.7192 51.0023 66.2855 83.5687 102.852 124.135 147.418
0 17.1528 26.436 37.7192 51.0023 66.2855 83.5687 102.852 124.135 147.418
More Related questions
We use cookies to improve the performance of the site. By staying on our site, you agree to the terms of use of cookies.