# [ACCEPTED]-Raising a decimal to a power of decimal?-decimal

Score: 14

To solve my problem I found some expansion series, and them 4 I had them implemented to solve the equation 3 X^n = e^(n * ln x).

``````// Adjust this to modify the precision
public const int ITERATIONS = 27;

// power series
public static decimal DecimalExp(decimal power)
{
int iteration = ITERATIONS;
decimal result = 1;
while (iteration > 0)
{
fatorial = Factorial(iteration);
result += Pow(power, iteration) / fatorial;
iteration--;
}
return result;
}

// natural logarithm series
public static decimal LogN(decimal number)
{
decimal aux = (number - 1);
decimal result = 0;
int iteration = ITERATIONS;
while (iteration > 0)
{
result += Pow(aux, iteration) / iteration;
iteration--;
}
return result;
}

// example
void main(string[] args)
{
decimal baseValue = 1.75M;
decimal expValue = 1/252M;
decimal result = DecimalExp(expValue * LogN(baseValue));
}
``````

The Pow() and Factorial() functions 2 are simple because the power is always an 1 int (inside de power series).

Score: 8

This should be the fastest for a positive 1 integer Exponent and a decimal base:

``````// From http://www.daimi.au.dk/~ivan/FastExpproject.pdf
// Left to Right Binary Exponentiation
public static decimal Pow(decimal x, uint y){
decimal A = 1m;
BitArray e = new BitArray(BitConverter.GetBytes(y));
int t = e.Count;

for (int i = t-1; i >= 0; --i) {
A *= A;
if (e[i] == true) {
A *= x;
}
}
return A;
}
``````
Score: 5

Here's a C# program to manually implement 13 Math.Pow() to a greater degree of precision 12 than .NET's double's based implementation. Cut 11 and paste into linqpad to run immediately, or 10 change the .Dump()s to Console.WriteLines.

I've 9 included a test of the result. The test 8 is as follows:

1. Goal = .4% pa with daily compounding on 10 000
2. Answer = should be 10 040
3. How = decimal b=10000; for (int i = 0; i<365; i++) { b *= rate; } where rate = (1.004)^(1/365)

I've tested 3 implementations 7 of rate: (1) Manual calculation (2) Excel 6 (3) Math.Pow

The manual calc has the highest 5 degree of accuracy. The results are:

``````Manually calculated rate:   1.0000109371043837652682334292
Excel rate:                 1.000010937104383712500000M [see formula =(1.004)^(1/365)]
Math.Pow rate:              1.00001093710438

Manual - .4%pa on R10,000:  10040.000000000000000000000131
Excel - .4%pa on R10,000:   10039.999999999806627646709094
Math.Pow - .4%pa on R10,000:10039.999999986201948942509648
``````

I've 4 also left some additional workings in there 3 - which I used to establish what the highest 2 factorial was that can fit into a ulong 1 (= 22).

``````/*
a^b = exp(b * ln(a))
ln(a) = log(1-x) = - x - x^2/2 - x^3/3 - ...   (where |x| < 1)
x: a = 1-x    =>   x = 1-a = 1 - 1.004 = -.004
y = b * ln(a)
exp(y) = 1 + y + y^2/2 + x^3/3! + y^4/4! + y^5/5! + ...
n! = 1 * 2 * ... * n
*/

/*
//
// Example: .4%pa on R10,000 with daily compounding
//

Manually calculated rate:   1.0000109371043837652682334292
Excel rate:                 1.000010937104383712500000M =(1.004)^(1/365)
Math.Pow rate:              1.00001093710438

Manual - .4%pa on R10,000:  10040.000000000000000000000131
Excel - .4%pa on R10,000:   10039.999999999806627646709094
Math.Pow - .4%pa on R10,000:10039.999999986201948942509648

*/

static uint _LOOPS = 10;    // Max = 22, no improvement in accuracy after 10 in this example scenario
//  8: 1.0000109371043837652682333497
//  9: 1.0000109371043837652682334295
// 10: 1.0000109371043837652682334292
// ...
// 21: 1.0000109371043837652682334292
// 22: 1.0000109371043837652682334292

// http://www.daimi.au.dk/~ivan/FastExpproject.pdf
// Left to Right Binary Exponentiation
public static decimal Pow(decimal x, uint y)
{
if (y == 1)
return x;

decimal A = 1m;
BitArray e = new BitArray(BitConverter.GetBytes(y));
int t = e.Count;

for (int i = t-1; i >= 0; --i) {
A *= A;
if (e[i] == true) {
A *= x;
}
}
return A;
}

// http://stackoverflow.com/questions/429165/raising-a-decimal-to-a-power-of-decimal
// natural logarithm series
public static decimal ln(decimal a)
{
/*
ln(a) = log(1-x) = - x - x^2/2 - x^3/3 - ...   (where |x| < 1)
x: a = 1-x    =>   x = 1-a = 1 - 1.004 = -.004
*/
decimal x = 1 - a;
if (Math.Abs(x) >= 1)
throw new Exception("must be 0 < a < 2");

decimal result = 0;
uint iteration = _LOOPS;
while (iteration > 0)
{
result -= Pow(x, iteration) / iteration;
iteration--;
}
return result;
}

public static ulong[] Fact = new ulong[] {
1L,
1L * 2,
1L * 2 * 3,
1L * 2 * 3 * 4,
1L * 2 * 3 * 4 * 5,
1L * 2 * 3 * 4 * 5 * 6,
1L * 2 * 3 * 4 * 5 * 6 * 7,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19,
1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20,
14197454024290336768L, //1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21,        // NOTE: Overflow during compilation
17196083355034583040L, //1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22    // NOTE: Overflow during compilation
};

// http://stackoverflow.com/questions/429165/raising-a-decimal-to-a-power-of-decimal
// power series
public static decimal exp(decimal y)
{
/*
exp(y) = 1 + y + y^2/2 + x^3/3! + y^4/4! + y^5/5! + ...
*/

uint iteration = _LOOPS;
decimal result = 1;
while (iteration > 0)
{
//uint fatorial = Factorial(iteration);
ulong fatorial = Fact[iteration-1];
result += (Pow(y, iteration) / fatorial);
iteration--;
}
return result;
}

void Main()
{
decimal a = 1.004M;
decimal b = 1/365M;

decimal _ln = ln(a);
decimal y = b * _ln;
decimal result = exp(y);
result.Dump("Manual rate");

decimal excel = 1.000010937104383712500000M;    // =(1.004)^(1/365)
excel.Dump("Excel rate");

decimal m = (decimal)Math.Pow((double)a,(double)b);
m.Dump("Math.Pow rate");

//(result - excel).Dump("Diff: Manual - Excel");
//(m - excel).Dump("Diff: Math.Pow - Excel");

var f = new DateTime(2013,1,1);
var t = new DateTime(2014,1,1);
Test(f, t, 10000, result, "Manual - .4%pa on R10,000");
Test(f, t, 10000, excel, "Excel - .4%pa on R10,000");
Test(f, t, 10000, m, "Math.Pow - .4%pa on R10,000");
}

decimal Test(DateTime f, DateTime t, decimal balance, decimal rate, string whichRate)
{
int numInterveningDays = (t.Date - f.Date).Days;
var value = balance;
for (int i = 0; i < numInterveningDays; ++i)
{
value *= rate;
}
value.Dump(whichRate);
return value - balance;
}

/*

// Other workings:

//
// Determine maximum Factorial for use in ln(a)
//

ulong max    =  9,223,372,036,854,775,807 * 2   // see http://msdn.microsoft.com/en-us/library/ctetwysk.aspx
Factorial 21 = 14,197,454,024,290,336,768
Factorial 22 = 17,196,083,355,034,583,040
Factorial 23 = 8,128,291,617,894,825,984 (Overflow)

public static uint Factorial_uint(uint i)
{
// n! = 1 * 2 * ... * n
uint n = i;
while (--i > 1)
{
n *= i;
}
return n;
}

public static ulong Factorial_ulong(uint i)
{
// n! = 1 * 2 * ... * n
ulong n = i;
while (--i > 1)
{
n *= i;
}
return n;
}

void Main()
{
// Check max ulong Factorial
ulong prev = 0;
for (uint i = 1; i < 24; ++i)
{
ulong cur = Factorial_ulong(i);
cur.Dump(i.ToString());
if (cur < prev)
{
throw new Exception("Overflow");
}
prev = cur;
}
}
*/
``````
Score: 0

I think it depends a lot on the number you 6 plan on plugging in. If 'a' and 'b' are 5 not 'nice' number then you'll likely get 4 a value which is non-terminating that is 3 impossible to store and if C# BigDecimal 2 behaves at all like Java BigDecimal it probably 1 throws an exception in such a case.

More Related questions